Joint Lab Bioelectronics<p>Automatically detecting emotions from <a href="https://mastodon.social/tags/EEGs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EEGs</span></a> is expected to become a major task of <a href="https://mastodon.social/tags/BCIs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BCIs</span></a>. However, inaccuracies, high error rates and a lack of stability still occupy <a href="https://mastodon.social/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a>. A research group has now succeeded in using Deep Convolutional Neural Networks <a href="https://mastodon.social/tags/DCNNs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DCNNs</span></a> to classify positive, neutral and negative <a href="https://mastodon.social/tags/emotions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>emotions</span></a> from EEG signals with 96% accuracy by having volunteers listen to different music.<br><a href="https://mastodon.social/tags/Bioelectronics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bioelectronics</span></a> </p><p><a href="https://mdpi.com/2079-9292/12/10/2216" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">mdpi.com/2079-9292/12/10/2216</span><span class="invisible"></span></a></p>