social.tchncs.de is one of the many independent Mastodon servers you can use to participate in the fediverse.
A friendly server from Germany – which tends to attract techy people, but welcomes everybody. This is one of the oldest Mastodon instances.

Administered by:

Server stats:

3.7K
active users

#QuantumInternet

0 posts0 participants0 posts today

The future of quantum optics and photonics promises the potential of a secure quantum internet that could revolutionize data protection. Achieving this requires controlling photons over vast distances, a field that saw a breakthrough when a Chinese satellite set a record for transmitting entangled photons. What’s next? Innovations could include longer-distance photon entanglement, improved quantum repeaters, and advances in quantum communication protocols.#QuantumInternet #Photonics #FutureTech

Replied in thread

In the lab we have an ODL, the optical delay line, used to get two photons to arrive at the same time; first author Mori-san of Kanazawa, work led by Hiroyuki Ohno:
arxiv.org/abs/2405.09881
#QuantumInternet

arXiv.orgScalable Timing Coordination of Bell State Analyzers in Quantum NetworksThe optical Bell State Analyzer (BSA) plays a key role in the optical generation of entanglement in quantum networks. The optical BSA is effective in controlling the timing of arriving photons to achieve interference. It is unclear whether timing synchronization is possible even in multi-hop and complex large-scale networks, and if so, how efficient it is. We investigate the scalability of BSA synchronization mechanisms over multiple hops for quantum networks both with and without memory in each node. We first focus on the exchange of entanglement between two network nodes via a BSA, especially effective methods of optical path coordination in achieving the simultaneous arrival of photons at the BSA. In optical memoryless quantum networks, including repeater graph state networks, we see that the quantum optical path coordination works well, though some possible timing coordination mechanisms have effects that cascade to adjacent links and beyond, some of which was not going to work well of timing coordination. We also discuss the effect of quantum memory, given that end-to-end extension of entangled states through multi-node entanglement exchange is essential for the practical application of quantum networks. Finally, cycles of all-optical links in the network topology are shown to may not be to synchronize, this property should be taken into account when considering synchronization in large networks.
Replied in thread

An advanced approach uses complicated groups of photons to try to get around loss in the fiber.
Naphan's paper:
arxiv.org/abs/2405.09876
#QuantumInternet

arXiv.orgEngineering Challenges in All-photonic Quantum RepeatersQuantum networking, heralded as the next frontier in communication networks, envisions a realm where quantum computers and devices collaborate to unlock capabilities beyond what is possible with the Internet. A critical component for realizing a long-distance quantum network, and ultimately, the Quantum Internet, is the quantum repeater. As with the race to build a scalable quantum computer with different technologies, various schemes exist for building quantum repeaters. This article offers a gentle introduction to the two-way ``all-photonic quantum repeaters,'' a recent addition to quantum repeater technologies. In contrast to conventional approaches, these repeaters eliminate the need for quantum memories, offering the dual benefits of higher repetition rates and intrinsic tolerance to both quantum operational errors and photon losses. Using visualization and simple rules for manipulating graph states, we describe how all-photonic quantum repeaters work. We discuss the problem of the increased volume of classical communication required by this scheme, which places a huge processing requirement on the end nodes. We address this problem by presenting a solution that decreases the amount of classical communication by three orders of magnitude. We conclude by highlighting other key open challenges in translating the theoretical all-photonic framework into real-world implementation, providing insights into the practical considerations and future research directions of all-photonic quantum repeater technology.
Replied in thread

People interested in switching, data center networks, and photonic chips will like Marii's paper:
arxiv.org/abs/2405.09860
#QuantumInternet
#quantumcomputing

arXiv.orgOptimal Switching Networks for Paired-Egress Bell State Analyzer PoolsTo scale quantum computers to useful levels, we must build networks of quantum computational nodes that can share entanglement for use in distributed forms of quantum algorithms. In one proposed architecture, node-to-node entanglement is created when nodes emit photons entangled with stationary memories, with the photons routed through a switched interconnect to a shared pool of Bell state analyzers (BSAs). Designs that optimize switching circuits will reduce loss and crosstalk, raising entanglement rates and fidelity. We present optimal designs for switched interconnects constrained to planar layouts, appropriate for silicon waveguides and Mach-Zehnder interferometer (MZI) $2 \times 2$ switch points. The architectures for the optimal designs are scalable and algorithmically structured to pair any arbitrary inputs in a rearrangeable, non-blocking way. For pairing $N$ inputs, $N(N - 2)/4$ switches are required, which is less than half of number of switches required for full permutation switching networks. An efficient routing algorithm is also presented for each architecture. These designs can also be employed in reverse for entanglement generation using a shared pool of entangled paired photon sources.
Replied in thread

A related but slightly different paper by collaborator Paolo Fittipaldi using our simulator studying satellite links:
arxiv.org/abs/2405.07589
#QuantumInternet

arXiv.orgEntanglement Swapping in Orbit: a Satellite Quantum Link Case StudySatellite quantum communication is a promising way to build long distance quantum links, making it an essential complement to optical fiber for quantum internetworking beyond metropolitan scales. A satellite point to point optical link differs from the more common fiber links in many ways, both quantitative (higher latency, strong losses) and qualitative (nonconstant parameter values during satellite passage, intermittency of the link, impossibility to set repeaters between the satellite and the ground station). We study here the performance of a quantum link between two ground stations, using a quantum-memory-equipped satellite as a quantum repeater. In contrast with quantum key distribution satellite links, the number of available quantum memory slots m, together with the unavoidable round-trip communication latency t of at least a few milliseconds, severely reduces the effective average repetition rate to m/t -- at most a few kilohertz for foreseeable quantum memories. Our study uses two approaches, which validate each other: 1) a simple analytical model of the effective rate of the quantum link; 2) an event-based simulation using the open source Quantum Internet Simulation Package (QuISP). The important differences between satellite and fiber links led us to modify QuISP itself. This work paves the way to the study of hybrid satellite- and fiber-based quantum repeater networks interconnecting different metropolitan areas.
Replied in thread

Soon followed that work with another paper, this one on the use of heterogeneous link types in networks, moving from single-hop to multi-hop with different link types:
arxiv.org/abs/2405.09862
#QuantumInternet #quantumcomputing

arXiv.orgPerformance of Quantum Networks Using Heterogeneous Link ArchitecturesThe heterogeneity of quantum link architectures is an essential theme in designing quantum networks for technological interoperability and possibly performance optimization. However, the performance of heterogeneously connected quantum links has not yet been addressed. Here, we investigate the integration of two inherently different technologies, with one link where the photons flow from the nodes toward a device in the middle of the link, and a different link where pairs of photons flow from a device in the middle towards the nodes. We utilize the quantum internet simulator QuISP to conduct simulations. We first optimize the existing photon pair protocol for a single link by taking the pulse rate into account. Here, we find that increasing the pulse rate can actually decrease the overall performance. Using our optimized links, we demonstrate that heterogeneous networks actually work. Their performance is highly dependent on link configuration, but we observe no significant decrease in generation rate compared to homogeneous networks. This work provides insights into the phenomena we likely will observe when introducing technological heterogeneity into quantum networks, which is crucial for creating a scalable and robust quantum internetwork.