You likely aren’t going to get enough energy to make up for the losses incurred when boosting voltage to 4.2 volts or whatever your battery requires. There’s tons and tons of scam devices out there in the world that attempt to convince people these devices make sense, but they really aren’t usable for anything meaningful.
Charging a battery with a couple microamps per hour. Would probably negates things like self-discharge? But certainly wouldn’t recharge a battery that you have in use with a device. And if that device has radio or storage attached to it, you definitely aren’t gaining enough electricity.
A few years back some farmer living in Droitwich, England (where the Radio 4 longwave transmitter is situated) lit his barn by connecting an antenna to fluorescent light tubes.
It worked, but also created a "not-spot" in the radio reception which the BBC really didn't like (its part of critical national infrastructure!) - officers from Ofcom turned up at his door, made him take the lot down and ordered him to use more "normal" power sources..
I’m skeptical of the “not-spot” claims here. This would suggest that radios also create “not-spots” when being tuned to as well, or that somehow the florescent light tubes were able to “pull” more electrons from the air that were destined to other radios.
@rarely a radio receiver uses *much* less of the power than lighting up the fluorescent tubes would (it wasn't just one lamp) and this incident happened close enough to the TX that it could upset the SWR of the transmitter output stages - if it /was/ possible to do this without creating problems elsewhere then every tall transmission tower would use the RF to power their aircraft warning lamps rather than a separate power supply...
That is the most plausible explanation I have heard but I still have questions. Say there’s an MW tower down the road and I have a 160m tower in my backyard. If I understand correctly, my tower may cause the signal coming from the AM tower to be re-resonated back to the AM tower so the AM tower needs to be detuned. But say I want to harvest the signal and I have tuned my tower to be resonant with the AM tower. Maybe in this case the SWR reading at the AM station is different because it is getting some of that re-radiated power back, and maybe the radiation pattern of the am station has changed slightly, but wouldn’t the main AM tower cover any gaps just like how waves spread out in the double slit experiment once they hit my resonant tower?
I get that a tower excites another tower, and I can understand that the AM engineers will likely hate me, but I don’t understand how radio reception could be affected. If anything, I might have made the station more directional (like a reflector in a yagi) but probably not.
@rarely if you are /that/ close to the antenna an extra tower, or any large amount of metal making the station more directional will definitely be unwanted, both by tradio station engineers and the Communications Ministry (licenses often require a particular directional pattern). But this is more an issue with LF and MF where waves are larger. At UHF/SHF frequencies for wifi harvesting could work but at present the component count required makes it less viable than other power sources.
@rarely this is why things behave differently when very close to the TX (how close will of course depend on the TX power and frequency/wavelength)